Dependable System Design For Reconfigurable Safety-Critical Applications

PhD Student: Anees Ullah

Research Group: CAD group

Advisor: prof. Luca Sterpone

Outline

- Dependability
- Re-configurability
- FPGA architecture and Slice Internals
- Problem Statement and goal
- Fine-grain Self-Repairing System (FGSR)
- Dynamically Reconfigurable TMR (DrTMR)
- ASIC fault emulation (FE)
- Conclusions
- Future Work

Dependability

- Reliable computations in today's Nanometric technology is challenging
 - Manufacturing defects (stuck-at, stuck-open, bridge faults)
 - In-operational effects (radiations , electromigration, aging)
- Dependable system design techniques should be applied from RTL to implementation phases
- These mitigation strategies are assessed with testing and fault injection techniques to ensure the desired reliability levels are attained

Re-configurability

- FPGAs are electronic devices that can upgrade and change its functionality in-field
- Redundancy for error masking/detection combined with re-configuration for correction is used in critical system design
- Re-configurability can also be used for fault injection/emulation as a tool of dependability assessment
- SRAM-based FPGAs are highly sensitive to Soft Errors and have huge recovery times

SRAM-based FPGAs: architecture &

FPGA's Slice Architecture

Problem statement and Goal

- To mitigate the effects of Multiple Bit Upsets (MBUs) in the configuration memory and reduce the recovery times
- Fine-grain redundancy offers better mitigation properties, precise diagnosis of faults and fast error detection while fine-grain reconfiguration improves the recovery times
- The challenge is the overhead introduced by finegrain approaches and the lack of design tools and methodologies
- The goal of this work is to exploit the FPGA's primitive elements (LUT, carry-chains) to support fine-grain approaches to redundancy and reconfiguration

Fine-grain self-repairing (FGSR)

- Self-repairing systems contain a Static and a Dynamic region implemented on a reconfigurable platform
- The Static region consists of resources (processors, memories, I/O interfaces) that are always required for the operation of the system
- The Dynamic region contains reconfigurable modules that can change functionality during operational phase of the system called *Partial Reconfigurable Modules* (PRMs)
- The research aim is to increase the fault tolerance capabilities for PRMs with reliable and fast errordetectors having a low area-overhead

FGSR - Methodology

FGSR - Results

Dynamically Reconfigurable TMR (DrTMR)

- 1. "On the Optimal Reconfiguration times of TMR circuits on SRAM based FPGAs", in IEEE NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2013), June 25-27, 2013
- 2. **Real-Time SEU Tolerant Circuits on SRAM-based FPGAs**", in 2013 IEEE Convention on Radiation Effects on Components and Systems (RADECS 2013), Sep 23-27, 2013
- "Recovery Time and Fault Tolerance Improvements for Circuits mapped on SRAM based FPGAs", Journal of Electronic Testing: Theory and Applications (JETTA)

DrTMR - Methodology

DrTMR - Results

1 LUT per Majority Voter

ASIC Fault Emulation (FE)

- The simulation of a circuit in the presence of faults is called fault simulation and it is a mandatory step to determine the *yield* of any VLSI fabrication process
- Fault Emulation is the hardware realization of fault simulation process in order to achieve speed
- The research aim of this activity is to exploit the *flexibility of LUTs* for fault injection purposes; emulating the ASIC *permanent* faults on FPGA

"Effective emulation of permanent faults in ASICs through Dynamically Reconfigurable FPGAs", in 24th IEEE International Conference on Field Programmable Logic and Applications Munich, Germany; September 2 - 4, 2014

FE - Methodology

FE - Results

Conclusions

 The fine-grain approaches to reconfiguration and redundancy simultaneously improves the fault tolerance and reconfiguration times

These improvements are achieved at an affordable area and clock period overhead

Future Work

 As future a work, radiation testing of the developed mitigation techniques need to be conducted

 The developed CAD algorithms can be be optimized with respect to clock period, area and reconfiguration times

Questions?

Thank you!